PARAMETRIC INSTABILITY OF THE m = 1 MODE
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We consider the parametric excitation of long-wave magnetohydrodynamic oscillations of
the m =1 type in a cylindrical plasma conductor with an alternating, longitudinal, high-fre-
quency current. The plasma cylinder is placed in a constant longitudinal magnetic field and
is enclosed in a conducting case. The problem is solved on the basis of the flexible filament
model under the assumption of ideal conductivity of the plasma and the case. Hill's method
is used to study the stability of the equation with periodic coefficients that describe the os-
cillations of the filament. Results of computer calculations of the stability increments of
oscillations in the first four resonance zones for various values of the parameters of the
system are given.

As was shown in [1}, when a high-frequency alternating current is used for the dynamic stabilization
of a plasma cylinder in a longitudinal magnetic field, parametric excitation of magnetohydrodynamic proper
oscillations of the cylinder, that are characterized by the azimuthal wave number m =1, can occur. In [2]
the boundaries of the first two zones of parametric excitation of the m =1 mode were determined, and an
analytic expression for the maximum increment of the buildup of short-wave oscillations was obtained
(ka > 1, where k is the wave number of the perturbation and ¢ is the radius of the cylinder). It is of interest
to make a more detailed investigation of the instability in question in the range of long-wave perturbations
(ke << 1), which must be excited under experimental conditions (see, for example, [3, 4]). This problem is
solved in the present paper. Here we give a numerical calculation of the instability increments of long-
wave oscillations of the m =1 type, excited in a cylindrical plasma conductor by a high~-frequency longitudi-
nal current. In contrast to [1, 2], the effect of the conducting case, surrounding the plasma cylinder, is
taken into account. The problem is solved on the basis of the flexible filament model under the assumption
of ideal conductivity of the plasma and the case. Hill's method [5] is used to investigate the stability of the
equation with periodic coefficients that describes the oscillations of the filament. Various possible regimes
of the operation of the system are considered.

1. Formulation of the Problem

Suppose that a high-frequency longitudinal current I = I cos wt flows along the surface of a cylindrical
plasma conductor. The conductor is placed in a constant longitudinal magnetic field, equal to B, outside
and to B; inside the plasma, and is enclosed in a conducting case of radius b. The plasma pressure p
counterbalances the time-averaged pressure of the magnetic field

8ap = B2 — B + (B .1

Here B, = By cos wt = 2I/ca is the azimuthal field of the current I on the surface of the filament and
the angular brackets denote a time average.
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It is convenient to reduce the investigation of the stability
of the system under consideration with respect to magnetohydro-
dynamic perturbations of the m =1 type, for which the surface of
the conductor is described by the equation

re=a -+ (f)exp (ikz £ i) (E:<<a), 1.2)

to the flexible filament model. The force F per unit length, per-
pendicular to the z axis, acting on the perturbed conductor, is
calculated in the magnetostatic approximation, and then we con-
sider the equation for the transverse motion of a length element
of the conductor with mass M per unit length

g 0z 04 M2, [ di® = F 1.3)

Fig. 1 in which the time dependence of the maghetic field, entering into
F, is already explicitly taken into account. A comparison with
04 _ results of a rigorous magnetohydrodynamic analysis (valid for

wfuy the case of static fields) shows that this model describes the sys-
by tem under consideration sufficiently well if the plasma is consid-
I3 ered to be incompressible and the perturbations are long-wave ones.
015

In the case under consideration the force F can be found
from formulas of [6] and has the form
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Fig. 2 Because of the sinusoidal time dependence of the current I
assumed above, Eq. (1.3) is an equation with periodic coefficients.
Upon the substitution wt = 27 it reduces to the standard form of
Hill's equation [5] with three terms:

&%,/ di® + (B, + 26, cos 2T 4 20, cos 41) E, = 0 (1.5)
Here
By = 4 (05 /@)? [(ka)* (2" + aift®) + Y (0" — 1) ho?]
01 = L 4(0s/0) kaohy, 0, = 2(0,/0)? (a0 — 1) k®
W, =U;/a, v,= BB/V/% (where p is the plasma density),
hi = Bi/Bev ha = BaO/Be
We note that, in view of (1.1), the velocity vg under typical experimental conditions when (Baz) <« Bg
is close to the velocity of magnetic sound in the plasma.

In the region ka < (a/b)hg, where the influence of the case is considerable, the coefficients of Eg.
(1.5) differ significantly from the coefficients of the analogous equation of [2]. In particular, 6, = 6, so
that the term with g, in (1.5) cannot be neglected in our investigation of stability, as was done in [2].

We write the general solution of Eq. (1.5) in the form [5]

£1(7) = Cie¥Qy (v) + Coe P, (%)
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where ¢1(7), ¢4(7) are periodic functions. Following Hill's method

m
FTJ Yoo [5}, we can find the complex characteristic exponent ; from the
0/ A0 equation
ba7

)

sin® (/ymin) = A sin? (Y, Y 6,) (1.6)

which contains the infinite determinant A = [Ap, pl, whose ele~
ments, reckoned from the center, are equal to

Bjm—ny '
Am,m =1, Am,n =77 (m==n)

09 — 4&m?2

In Eq. (1.5) 9; = 0 for i > 2. The instability increment v is
evidently equal to (w/2) Re p. Using (1.6), it is not difficult to
show that for the n-th resonance zone y is determined from the
equation

ch 2y /) = (— 1)" (1 — 24 sin® (/47 V By)) @.7)

Solution of Eq. (1.7) for values of n ranging from 1 to 4
and for various values of the parameters hg, hj, b/a was carried
out by computer. The rank of the determinant [Am,n] was chosen
to be equal to 11, which ensured a sufficient degree of accuracy
in the calculations. In the plane of the variables ka, w/wg the
lines of equal values of the dimensionless increment vy = Y/ wg
were determined for each group of parameters. The variables ka,
w/wg were varied between the limits 0 = (ka, w/wg) < 1. This
range is of greatest interest from a practical point of view since,
in the first place, long-wave perturbations have the greatest in- -
stability increment [2], and,in the second place, the frequency
wg under typical experimental conditions is of the order (0.5-1) -

10% sec™, while w usually does not exceed 107 sec™.

2. Discussion of the Results

# Results of the calculations are shown in Figs. 1-5. Equal-
! 4z o4 at increment lines for a high-frequency z-pinch {h; = 1) are plotted
Fig. 4 in Figs. 1-4, with the following parameters: h, = 0.25,b/a = 2.5

(Fig. 1); b, = 0.5, b/a = 2.5 (Fig. 2); h, = 0.25, b/a = 1.5 (Fig. 3);
h, =0.5,b/a = 1.5 (Fig. 4). Equal-increment lines for a system of the 6-pinch type {; = 0) are plotted in
Fig. 5, with the parameters h, = 0.25, b/a = 5. In each resonance zone the largest of the values of the
increment yg indicated on the graphs are close to the maximum increment in the zone in question. For
an actual filament having a finite length L, the excitation zones split up into a series of vertical segments,
corresponding to discrete values of the dimensionless wave number

ka=@ua/L)j (=0,1,2..)

We shall study point out some characteristic properties of the instability under study, which are re~
flected in Figs.1-5. First of all, we note that the calculated increments y_ do not exceed the maximum
instability increment of the m =1 mode in the case I = J; = const (Shafranov —Kruskal mode), which is at-
tained for ka ~ hy and in dimensionless form is equal fo ygg~ vg- The conducting case has a substantial
influence on the parametric excitation of the m =1 mode, increasing the rigidity of the current-conducting
filament to long-wave bends and displacements. The most important result of this effect is that in the re-
gion ka < (¢/b)hg the resonance zones are displaced toward higher frequencies, approximately proportional
to (b/a)h,. In particular, the possibility of buildup of perturbations with k = 0 appears (displacement of the
filament as a whole), as compared with a filament without the case, which is neutrally stable. When the
case is present there is also a change in the shape of the resonance zones, in which deformations in the
form of constrictions appear. The latter effect is due to the interaction of modulation harmonics with the
frequencies w and 2w, which, ag calculations show, are equal in order of magnitude to the amplitudes g
and ¢, in the region ka < (a/b)’hg .
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The first resonance zone represents the greatest danger to the
stability of the filament. The fundamental oscillation in this zone has
the frequency /2 (in the n-th resonance zone the oscillation with the
frequency nw/2 has the maximum amplitude). The limiting value
{w/wg) min» below which the first zone does not descend, is given ap-
proximately by the expression

(m\ V2 h,

Es—)min = Vjap—1

Thus, with a sufficiently tight case at frequencies w « wg, the
buildup of the most rapidly growing oscillations with the frequencies
nw/2, that are excited in the other zones, have increments that are
considerably smaller. Elevation of the resonance zones also occurs
with an increase in the parameter h,; however, in this case the reso-
nance zones spread out, and the instability increments increase.

Fig. 5

We also remark that for systems of the z-pinch type (h; =1, Figs. 1-4) parametric excitation of os-
cillations with a given wave number k occurs for higher relative frequencies w/wg than for systems of the
g-pinch type (hj = 0, Fig. 5). This effect is due to the increase in the rigidity of the filament because of
entrainment of the plasma by the field Bj.

In conclusion the authors thank M. L. Levin for helpful discussions of the work.
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